|
Nominal Logistic RegressionRegression Table - Odds Ratio |
In nominal logistic regression, for each logit function, there is an odds ratio for each covariate. If the covariate is a categorical variable, there is an odds ratio for the number of categories minus one. This is because a unique parameter is calculated for each covariate for each value of the response except for the reference event.
Example Output |
Logistic Regression Table Odds 95% CI Predictor Coef SE Coef Z P Ratio Lower Upper Logit 1: (8/1) Constant -0.919125 0.446453 -2.06 0.040 RaceOdds 0.143745 0.0549665 2.62 0.009 1.15 1.04 1.29
Logit 2: (7/1) Constant -2.11912 0.523139 -4.05 0.000 RaceOdds 0.184382 0.0548107 3.36 0.001 1.20 1.08 1.34
Logit 3: (6/1) Constant -1.14562 0.451970 -2.53 0.011 RaceOdds 0.159653 0.0546516 2.92 0.003 1.17 1.05 1.31
Logit 4: (5/1) Constant -0.839914 0.444873 -1.89 0.059 RaceOdds 0.137946 0.0551381 2.50 0.012 1.15 1.03 1.28
Logit 5: (4/1) Constant -1.11708 0.463681 -2.41 0.016 RaceOdds 0.143264 0.0553128 2.59 0.010 1.15 1.04 1.29
Logit 6: (3/1) Constant -0.571955 0.439702 -1.30 0.193 RaceOdds 0.117747 0.0559315 2.11 0.035 1.12 1.01 1.26
Logit 7: (2/1) Constant -0.243669 0.453674 -0.54 0.591 RaceOdds 0.0635537 0.0612533 1.04 0.299 1.07 0.95 1.20
Log-likelihood = -389.629 Test that all slopes are zero: G = 45.535, DF = 7, P-Value = 0.000 |
Interpretation |
|
For the horse racing data, the odds ratios can be interpreted as: