Example of Mantel-Haenszel-Cochran Test
main topic
     interpreting results     session command    
see also 

You want to assess the association between gender and smoking preference at each activity level (A lot, Moderate, or Slight) for individuals in your study, assuming there is no three-way interaction.

1    Open the worksheet EXH_TABL.MTW. If you have not already done so, set the value order for the variable Activity.

2    Choose Stat > Tables > Cross Tabulation and Chi-Square.

3    Choose Raw data (categorical variables).

4    In Rows, enter Gender.

5    In Columns, enter Smokes.

6    In Layers, enter Activity.

7    Under Display, check Counts.

8    Click Other Stats. Under Tests for 2x2 tables, check Mantel-Haenszel-Cochran test for multiple tables.

9    Click OK in each dialog box.

Session window output

Tabulated Statistics: Gender, Smokes, Activity

 

 

Results for Activity = Slight

 

 

Rows: Gender   Columns: Smokes

 

          No  Yes  All

 

Female     3    1    4

Male       3    2    5

All        6    3    9

 

Cell Contents:      Count

 

 

Results for Activity = Moderate

 

 

Rows: Gender   Columns: Smokes

 

          No  Yes  All

 

Female    20    6   26

Male      22   13   35

All       42   19   61

 

Cell Contents:      Count

 

 

Results for Activity = A lot

 

 

Rows: Gender   Columns: Smokes

 

          No  Yes  All

 

Female     4    1    5

Male      12    4   16

All       16    5   21

 

Cell Contents:      Count

 

 

Results for all 2x2 tables

 

 

Common odds ratio  1.85449

 

MHC statistic  DF   P-Value

     0.993340   1  0.318927

 Interpreting the results

The cells in the table contain the counts for Gender (row) and Smoke (column). A two-way table is displayed for each Activity level (Slight, Moderate, and A lot).

The common odds ratio of 1.85449 combines data from all three tables to estimate that the ratio of smokers to non-smokers among males is 1.85449 times the same ratio among females. The Mantel-Haenstzel-Cochran (MHC) test assumes that the odds ratio is the same for all three levels of activity. The MHC test has a p-value of 0.318927, indicating that the observed difference between males and females is not statistically significant.

 

Minitab help Stat Graph SixSigma DOE Glossary Reliability SPC,MSA,CPK
Create Pareto chart - Free tool

Calendar with week numbers

US Federal Holidays

Australia Public Holidays