Analyze Variability

MLE estimation method - P-Values

  

Minitab provides two methods for fitting your model: least squares regression and maximum likelihood estimation. In many cases, the differences between the results of the two methods are minor. One approach is to use the p-values from the least squares analysis to choose the terms in the model, then use the coefficient estimates from the maximum likelihood analysis to calculate fits.

Example Output

 

Coded Coefficients for Ln(Std)

 

                             Ratio

Term                Effect  Effect     Coef  SE Coef  Z-Value  P-Value    VIF

Constant                             0.3538   0.0791     4.48    0.000

Material           -0.9607  0.3826  -0.4803   0.0791    -6.08    0.000   1.00

InjPress           -0.1830  0.8328  -0.0915   0.0791    -1.16    0.247   1.00

InjTemp             0.0566  1.0582   0.0283   0.0791     0.36    0.720   1.00

CoolTemp           -0.1204  0.8866  -0.0602   0.0791    -0.76    0.446   1.00

Material*InjPress  -0.9927  0.3706  -0.4963   0.0791    -6.28    0.000   1.00

Material*InjTemp    0.1866  1.2051   0.0933   0.0791     1.18    0.238   1.00

Material*CoolTemp   0.0032  1.0032   0.0016   0.0791     0.02    0.984   1.00

InjPress*InjTemp   -0.0775  0.9254  -0.0388   0.0791    -0.49    0.624   1.00

InjPress*CoolTemp  -0.0800  0.9231  -0.0400   0.0791    -0.51    0.613   1.00

InjTemp*CoolTemp    0.0128  1.0129   0.0064   0.0791     0.08    0.935   1.00

Interpretation

In this example, the manufacturer already has the least squares regression results, which showed that material and the material by injection pressure interaction were significant with p-values equal to 0.000. The MLE results confirm the least squares regression results. The factor material and the interaction material by injection pressure are both significant with p-values equal to 0.000.