Analyze Variability

MLE estimation method - Effects

  

The effects in the MLE estimated effects and coefficients table indicate the relative strength of the effects. Minitab provides two methods for fitting your model: least squares regression and maximum likelihood estimation. In many cases, the differences between the results of the two methods are minor. One approach is to use the p-values from the least squares analysis to choose the terms in the model, then use the coefficient estimates from the maximum likelihood analysis to calculate fits.

Example Output

Coded Coefficients for Ln(Std)

 

                             Ratio

Term                Effect  Effect     Coef  SE Coef  Z-Value  P-Value    VIF

Constant                             0.3538   0.0791     4.48    0.000

Material           -0.9607  0.3826  -0.4803   0.0791    -6.08    0.000   1.00

InjPress           -0.1830  0.8328  -0.0915   0.0791    -1.16    0.247   1.00

InjTemp             0.0566  1.0582   0.0283   0.0791     0.36    0.720   1.00

CoolTemp           -0.1204  0.8866  -0.0602   0.0791    -0.76    0.446   1.00

Material*InjPress  -0.9927  0.3706  -0.4963   0.0791    -6.28    0.000   1.00

Material*InjTemp    0.1866  1.2051   0.0933   0.0791     1.18    0.238   1.00

Material*CoolTemp   0.0032  1.0032   0.0016   0.0791     0.02    0.984   1.00

InjPress*InjTemp   -0.0775  0.9254  -0.0388   0.0791    -0.49    0.624   1.00

InjPress*CoolTemp  -0.0800  0.9231  -0.0400   0.0791    -0.51    0.613   1.00

InjTemp*CoolTemp    0.0128  1.0129   0.0064   0.0791     0.08    0.935   1.00

Interpretation

For the insulation data, the effect for Material from the maximum likelihood analysis is -0.9607 and the effect from the least squares analysis is -0.9598, a difference of only .0009. The effect from the maximum likelihood analysis of the interaction material by injection pressure is -0.9927 and the effect from the least squares analysis is -0.9918, a difference of only .0009. These results indicate that the difference between these two methods for the insulation data is negligible.